What is Vision AI, and why is it important?

Businesses across industries often have more visual data on hand than they know what to do with. After all, billions of images and hundreds of thousands of hours of video are created every day. Yet, despite their massive and increasing image and video collection, enterprises are struggling to extract business value from this data. 

Hidden within this visual data are valuable insights that have the potential to transform operations in powerful ways, saving businesses significant time and money in the process. The challenge, however, is not a lack of understanding around what computer vision technology can deliver, but the market complexity that blocks creation of successful, production-ready vision AI solutions in the first place.

Regardless of industry or sector, any business that uses cameras today can immediately put the images and video they capture to work to uncover areas for optimization and real-time analysis. All that’s needed is the imagination and understanding of the problems to solve, and a platform provider to guide them—whether business teams have technical expertise or not—through the machine learning lifecycle.

In this post, we’ll define vision AI, what it means for different businesses and stakeholders, and how any user can get started executing their computer vision project today.

What is Vision AI?

Vision AI involves training computers to replicate human vision and situational awareness using machine learning (ML) principles and techniques. 

To create a vision AI application, practitioners must start by labeling images, video, and other visual data with the context necessary for machines (or machine learning models) to derive actionable insights. Once data labeling is complete, the models then continue to learn from those applied annotations. To ensure long-term accuracy in production, human practitioners apply new and more accurate labels as more visual data and context is obtained. 

From there, a platform can be leveraged for deployment that allows users to easily iterate, monitor, optimize and successfully operationalize computer vision models in production.

A lifecycle wheel showing the 5 parts of the Plainsight vision AI platform: Collecting Data, Labeling Images, Training Models, Deploying Solutions and Operationalizing the Insights.
Streamlined computer vision for end-to-end application development.

Vision AI as we know it today has evolved from the concept of computer vision that was first established in 1959 with the publication of Receptive fields of single neurones in the cat’s striate cortex by neurophysiologists   David Hubel and Torsten Wiesel . Through a series of happy accidents, Hubel and Wiesel were able to determine that image processing in a cat’s brain—used here as a proxy for both human and computer vision—begins with simple shapes and structures, like oriented edges and straight lines. 

The principles established with this study would go on to help define the concept of deep learning. But Hubel and Wiesel’s report also dovetailed with the development of the first image scanning technologies, as well as the dawn of 3-D computing, which in concert helped establish AI as its own field of academic study. 

While early researchers in the 1960s anticipated that it would take no more than 25 years to develop computers that are as intelligent as humans, scientists are still working toward that goal roughly 60 years later. Neuroscientist David Marr was able to create algorithms for machines to detect basic shapes as early as 1982, but it wasn’t until 2001 that the first real-time facial recognition applications became available. 

While computer vision was viewed as a deeply technical concept for much of the past half century, modern vision AI can be achieved with the help of platforms and professional services that assist businesses and teams with any level of technical expertise. 

With the barrier to adopting computer vision lower today than ever before, practitioners across industries can start deploying vision AI to optimize processes in myriad settings.

Why is Vision AI important?

By harnessing the power of visual data, businesses gain a better understanding of their operations and processes that may be difficult to monitor and track accurately first-hand. In a factory setting, for instance, cameras used for general security practices can also be the source of visual inputs that improve product quality, worker health and safety or even enhance productivity. 

By training data models to recognize signs of hazards such as gas leaks, foreign objects, and/or contaminants, for instance, remote teams can set up automated alerts that empower stakeholders to react in near-real-time and develop proactive remediation processes. 

Even in “front-of-house” hospitality and retail settings, teams can leverage cameras on the floor to better understand customer flow and help optimize for service and sales as well as venue and facilities layouts. Depending on the situation, users have the power to deploy more active, task-specific vision AI solutions too, stationing cameras in strategic locations with the sole purpose of feeding continuous data into a computer vision workflow. 

Tools that make deploying these applications more seamless (while helping teams operationalize and optimize their models in use) blow wide open the possibilities for potential use cases: All someone needs is access to visual data to start making their computer vision dreams a reality.

5 Steps to Vision AI On-Demand

To get started creating a vision AI model today, users need to leverage an all-encompassing computer vision platform that guides them through each step of the process, from labeling to deployment. Otherwise, teams will be burdened with managing a patchwork of complex tools, which only slows down the process, diminishing the value of computer vision by reducing its agility. 

With Plainsight, users with any level of machine learning expertise can manage their vision AI solutions from start to finish, with the ability to: 

  1. Easily sync or upload images and video to begin labeling
  2. Quickly create custom label schemas and label datasets in one place, using AI-powered labeling features like SmartPoly selection, Track Forward, and AutoLabel 
  3. Train models with labeled datasets with only a few clicks and built-in intelligence using Plainsight’s SmartML training backend
  4. Deploy the Image API and test your model and evaluate performance
  5. Utilize our Predictions API to get predictions from your model

For enterprise customers, Plainsight can supercharge their computer vision efforts by guiding the development of AI-powered business solutions end-to-end. Leveraging Plainsight’s team of ML experts, enterprises benefit from a full suite of custom services tailored specifically to their business needs, complete with flexible solution deployment options—including edge, public or private cloud and on-premises—as well as a dedicated support team.

With an all-in-one platform that delivers complete control over the entire computer vision lifecycle, teams don’t have to wait to explore vision AI, or even make significant upfront investments in new technology to see its value. In that same vein, it only makes sense for businesses to partner with experts in the field of machine learning to better understand the processes and true capabilities of the latest computer vision solutions.

 At Plainsight, this machine learning expertise is one pillar of the full suite of custom services we deliver to our enterprise customers to help guide their AI-powered enterprise solutions from ideation all the way through operationalization and ongoing maintenance. With pricing based on business needs and complete flexibility in terms of deployment, Plainsight streamlines computer vision by offering a true partnership that goes beyond standard consultancy.

For organizations that are ready to execute on full-fledged computer vision projects, Plainsight’s team can demonstrate how to streamline the computer vision lifecycle across any business’ value chain. We’ll provide the vision AI services and resources you need for creating, training, and deploying custom vision AI models to see value quickly. Schedule a demo today.

Sign up for Plainsight On-Demand today to start testing out your vIsion AI ideas immediately, with free labeling and $100 in additional credits for accessing a bevy of cutting edge platform features.

More Plainsight Blog Posts:

Chips and Science Act to Pump $52 Billion into U.S. Manufacturing

Chips and Science Act to Pump $52 Billion into U.S. Manufacturing

Throughout the pandemic, “supply chain woes” have been blamed for everything from empty store shelves and skyrocketing consumer prices to a more recent surplus in inventory at big-box stores. All of this has many experts unsure about how to characterize the current state of the U.S. economy.

What is machine vision?

What is machine vision?

Machine vision was really born on the assembly line, designed as a system of existing technologies and machinery that, combined, “watch” the production process and recognize when flaws occur.